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Abstract 

This paper provides a framework for analyzing white noise disturbances in linear sys- 
tems. Rather than the usual stochastic approach, noise signals are described as elements 
in sets and the disturbance rejection properties of the system are described in a worst case 
setting. This type of modeling of noise and disturbances very much fits the philosophy of 
both the behavioral and robust control settings. The description is based on properties 
of finite records of signals, which may be verified directly on experimental data. Bounds 
of system gain for input signals in these sets are given, and their asymptotic behavior for 
long data records is analyzed. 

1 Introduction 

The presence of low-correlated disturbances (noise) in physical systems has usually been 
modeled by thinking of the disturbance as the realization of a stochastic process, which is 
white in the sense of having zero autocorrelations in the expected value sense. The basic 
result for analysis of linear systems in the presence of stochastic noise is that if unit variance 
white noise is input to a stable linear system, the output variance (expected value of power) 
is given by the 2-norm of the system function. Moreover, the spectral characteristics of the 
output signal are given by the filter. 

However, if in a real-world situation we want to use results of this type, we will have 
t o  convince ourselves that our disturbances can be accurately modeled as a stochastic white 
noise trajectory. Trying to decide this from experimental data leads to a statistical hypothesis 
test on a finite record of the signal. In other words, we will accept our signal as white noise if 
it belongs to a certain set, designed to  give us reasonable confidence in the whiteness of the 
source. This set is typically described in terms of time autocorrelations. 

This paper intends to show that these sets themselves contain sufficient information about 
the signals to predict properties of the system response. In other words, since what we measure 
are time correlations of the signals, and what we are trying to predict are system gains and 
spectral characteristics of the outputs, it seems natural to tie these together directly, without 
need of modeling the (stochastic or deterministic) mechanism that generates the disturbances. 



The advantage of this approach, and the main motivation for this work, is that set de- 
scriptions and worst case gains are the usual tools in which robust control has been able to 
integrate both disturbances and other descriptions of uncertainty in system models. For a re- 
view of this we refer to [5] .  So far, however most work in this field (a  notable exception is [8]) 
has taken the conservative step of allowing larger classes of disturbances (arbitrary bounded 
power signals, or arbitrary signals in a ball of L2 or L,), ignoring spectral properties of the 
disturbances. 

In many practical situations these larger classes imply a large conservatism; we do not 
expect a perturbation such as, for example, thermal noise on a resistor to  be a persisting 
sinusoid; we know it will be a "white" signal. The only reason robust control has looked at 
a larger class is to allow a simple unified framework with further uncertainty in the system 
model. By using deterministic versions of spectral constraints, we attempt here to  integrate 
these "whiteness" properties with the worst case paradigm. 

The deterministic approach to spectral analysis is not new and goes as far back as Wiener 
[I]; a modern reference is [2]. In those treatments, however, most of the attention is devoted 
t o  estimation of the underlying spectrum and stochastics are usually avoided by writing only 
asymptotic results (as the length of the data record goes to infinity). Here we will focus on 
worst case gains (we care about disturbance rejection, rather than estimation) and since in 
practical applications we only have finite records of the signals, we will try to get as much as 
we can from them and later consider asymptotic results. 

We consider finite records of the signals, and define sets of signals in terms of constraints 
on correlations (or dually, of EFTS), including parameters that characterize the "whiteness" 
of the signals in the set. The norm induced in the system (worst case gain in energy with 
signals in the set) can be bounded in terms of these parameters. By appropriate choice of the 
evolution of these parameters as the length of the data record grows, we can recover asymp- 
totically the 2-norm as the relevant system norm, now understood in a worst case setting. 
Furthermore, this is consistent with defining the sets such that they include a stochastic white 
noise realization with "large" probability, so nothing is lost with this approach. 

Finally, this way of describing connects up very naturally with behavioral descriptions of 
linear systems, as introduced by Willems 131. In that framework, systems are described by 
behaviors, i.e. sets of trajectories compatible with the system laws. To study these systems 
in the presence of noise in some of the variables amounts to intersecting the behavior with 
the noise sets in these variables. It is further shown that the constraints which define our sets 
can be expressed as uncertain behavioral equations as introduced in [4]. This would provide 
a unified framework to analyze systems in the presence of white noise as well as other forms 
of uncertainty. 

2 Assumptions and notation 

We will consider discrete time signals and systems. We are interested in describing noise 
signals and characterizing system response to them in steady state (ignoring transients) in 
terms of finite records of signals. We will assume that the systems are linear time invariant 



and stable, and to get sensible answers that the length N of our data record is much larger 
than the system time constants (in the FIR case, N >> T, duration of system response). 
Under this assumption, there is no loss in generality if we consider the signals to  be periodic, 
with period N, and we have available the information of one period. In fact, the system will 
not be sensitive to these "long range" correlations of the input signals. Not only do we get 
more tractable expressions, but this is also the natural thing to look at if we are interested in 
"steady state" response of the system to persistent disturbances as opposed to the transient 
response. 

Let x(t) be a periodic, real valued signal, of period N, which we will often identify with 
the finite sequence x(0) - . x(N - 1). 

The discrete Fourier transform (DFT) X(k),  k = 0 . .  . N - 1 of the sequence x(t), is defined 
by the relations 

We introduce the autocorrelation sequence of x (circular autocorrelations of the vector x(0) - .  .x (N - 

1)): N-1 

TX(T) = ~ ( t  + ~ ) x ( t )  
t = O  

I t  is well known that the sequences r,(r), r = 0 . . N - 1 and the "power spectrum" 
S ( k )  = IX(k)I2, k = 0 .  . N - 1 form a DFT pair. 

For vector-valued signals x(t) E Rn,  we consider the matrix autocorrelation (prime denotes 
transpose) 

t = O  

The DFT can be defined for a vector or matrix valued sequence with the same formulas as 
above, and in this case we find that S(k) = X(k)X*(k), k = 0 . .  . N  - 1 is the DFT of R,(T). 

For a vector-valued N-periodic signal x(t), we will use as norm the energy over the period, 

We consider a stable, discrete time linear time invariant system with in general rn inputs 
and p outputs ( q  is the shift operator): 

The frequency response (Fourier transform of H(t)) is denoted by 3t(ejU). The 2-norm of 
the system is given by 

ca 1 2" /l'I-l(l; = x trace(H(t)Hr(t)) = - trace ('H(eiw)*~(ej"')) dw 
t=-03 2~ 0 

We define the autocorrelation matrix of H by 



t=-03 

assuming convergence for every T . This implies I I 'H~I~ = trace(RH(0)). 
For a SISO system we will use lowercase letters, h(t) denoting the system response, r h ( ~ )  

the  autocorrelation function, rh(0) = 1)3t)];. 

3 Time domain descriptions 

To keep the presentation simple, we will restrict ourselves in this section to scalar noise signals 
which are inputs to a SISO system. We will try to give a set description of what it means for 
a noise signal to  be white, and characterize the response of the system. Multivariable versions 
are  delayed to  a later section. The first result is the following: 

Lemma 1 Let 'H be a SISO discrete time system, 

Let u(t), t = 0 .  N - 1 be a fragment of an N-periodic input signal to system 7-t, 
y(t), t = 0 .  - - N - 1 be the corresponding steady state (periodic) output. Then 

In particular, 00 

Proof: 

The previous statement shows that the time autocorrelations of u map in a simple way to 
their counterparts in y. So any information we have on the structure of the rus can be easily 
transferred to  the rys. 

We now concentrate in defining what we mean by a "white" signal. Clearly, we are looking 
for signals such that the autocorrelation vector looks like a delta function. In other words a 
signal x(t) is white if r,(r) is small for nonzero r. We will only require this to hold for values 
of r smaller than a horizon parameter T. We have the following: 



Definition 1 A signal x ( t ) ,  t = 0 .  . . N - 1 is said to be white with level y up to time lag T 
if it satisfies 

W e  will denote the set of all such signals by WN,r,T. 

The need for a band as defined by the parameter y is not surprising, since we do not expect 
finite length autocorrelations to be exactly zero. A natural description for white signals would 
involve y decaying to  0 as N goes to infinity, i.e. as the averaging increases. Determination of 
a n  appropriate y for a given experimental record can be done easily from an autocorrelations 
plot which is in fact a common tool in time series analysis and system identification. Figure 
1 below depicts such a plot for a pseudorandom sequence. 

tau 

Figure 1: Autocorrelation plot of a pseudorandom sequence 

The introduction of a horizon T in which we require our autocorrelations to be small 
(instead of forcing T = N - 1)  gives us more generality. Typically, we only care about low 
correlation in time scales where the system responds strongly. 

Both y and T are, in fact, a parameterization of a rectangular weight function which 
specifies our constraints on the autocorrelation: we could rewrite the constraints in our set 
as  I T , ( T ) ~  5 v(r)r,(O), with V ( T )  = 7 for 0 < T 5 T ,  V ( T )  = 1 for T > T. 

Other shapes of this weight function v could be considered, we will comment briefly on 
this a t  the end of the section. 

To gain insight into the response of the system when the input is white noise, we will 
restrict ourselves for now to the FIR case, 

The next result follows immediately from Lemma 1. 

Theorem 1 Assume l-t is FIR as in (4), and the input u E WN,~ ,T ,  then 



Alsol if we denote IJ7111WN,7,T = sup{%, u E WN,7,T) , the induced system norm (worst case 
gain) with respect to signals in WN,-(,T, then 

If in addition u E W N , ~ , ~ T ,  then 

The inequalities (6) are bounds for I17-lIIWN,7,T, the measure of disturbance rejection of 
the system in the presence of disturbances from the set WN,y,T. The upper bound is simply 
expressed as a convex combination, weighted by y of the 2-norm of the system and the 1-norm 
of the autocorrelations sequence. If y is small, we are as expected close to the 2-norm of the 
system. 

Inequality (7) lets us conclude that for small y,  (and using a time horizon 2T) the autocor- 
relations of the time series y are essentially determined by the autocorrelations of the filter. 
More precisely, they lie (up to  a constant factor ll~11~) in a band of width y c:='=_, Irh(r)l, 
centered in the autocorrelations of the filter. 

Therefore, this band is a natural set description for colored noise. Note that in this way we 
are able to reinterpret the usual methods of time series analysis, which essentially consist in 
writing the observed signal as a filtered version of a white "innovations" signal. The modeling 
is considered complete when these innovations satisfy a "whiteness" test, usually of the form 
described by our sets. 

Going back to  (6), a natural question is whether the upper bound on IIHllwN,,:, is tight. 
It is easy to  observe that if we set y = 1, there are no restrictions other than periodicity in 
the input signal, and the induced norm can be bounded by the H ,  norm of the system which 
in this FIR case is equal to 

T 

sup (rh(o) t 2 rh(r1 cosur 
W 7=1 ) h  

and is in general strictly less than the bound obtained. However, for small enough y the 
bound is tight: 

Proposition 1 In the conditions of Theorem 1, if y < 1/T, then for large enough N we have 
2 

II 'h!11N,7,T = 11x11; ( l  - 7 )  + 7 c T = - ~  Irh(~)I 

Proof: Consider an input u E WN,y,T, with llull = 1 = ru(0). Then the numbers 
r , ( r ) , r  = 1.. .T all lie in the interval [-y, y]. From Lemma 1, 

T 

I[!-///: = r.y(o) = rh(0) + 2 X  ru (~ ) rh ( r )  
r=l 

(8) 



So  if we can find a sequence u(0) . - .u(N - 1) whose autocorrelations take the values f y with 
signs matching those of T ~ ( T ) ,  then the upper bound is achieved for this sequence. This leads 
us  to the following question: under what conditions can a set of numbers ro - - . rT be obtained 
a s  the autocorrelations of a sequence? It turns out that if the Toeplitz matrix . . . . . . . . .  

. . . . .  

TT . . . . . . . . .  

is  positive definite it can be shown (see [7] ,  for example) that there is a stochastic process 
with those autocorrelations, and it is not hard to conclude from here that for sufficiently large 
N, a finite sequence with those autocorrelations can be found. 

It remains to  show that if y < 1/T, choosing ro = 1, and r ,  = f y for T = 1 - .  .T , then 
the  corresponding R T  matrix is positive definite. 

To see this, consider the matrix I - RT, which has 0 on the diagonal and f y elsewhere. 
Clearly the maximum row sum norm of I - RT is y T  < 1, therefore X,,,(I - RT)  < 1 and 
RT is positive definite. 

From the preceding discussion, it is clear that we obtain sharper bounds when the param- 
eter y is small, so we would want y as small as possible; however, pushing it too low might 
leave out the signals we want to describe. To get some insight into this compromise, we turn 
t o  asymptotic results. First, an obvious consequence of Theorem 1 is 

N-03 Proposition 2 If T is fixed, H as in  (4), and y(N)  - 0, then 

The next result is useful in obtaining a consistency check with the stochastic approach, 
and ensure we are not being too restrictive in our sets. We pose the following question: if the 
signals effectively come from a stochastic white noise source, what decay rate of y (N)  will 
guarantee that the signals fall in WN,y,T with large probability? A reasonably general answer 
is the following ( P  denotes probability): 

Proposition 3 Let T be fixed, u(0), . . -, u(N - 1) be independent, identically distributed ran- 
d o m  variables, with 0 mean and finite variance. 

N-oo N-oo If y ( ~ ) n  - oo, then P ( u  E WN,-,,T) ---) 1. 

Proof: See the Appendix. 

Returning t o  the general IIR case, we write extensions of Theorem 1. The proof is imme- 
diate from Lemma 1 and the definition of WN,-(,T. 



Theorem 2 Let 'H be an IIR filter, with Crco Irh(t)l < oo. In the conditions of Lemma 1, if 
in addition u E WN,y,T, then 

Focusing on the case r = 0, and defining II'HIIWN,y,T as before, we have 
I' 

The bound on system gain depends explicitly on the parameter T. If T is chosen large 
with respect to  the decay rate of h(t), and y is chosen small, we expect II'HllwN,y,T to be close 
t o  the 2-norm of 'H. As we take longer data records ( N  large) we can think of also making T 
grow with N, to  cancel the "tail" term asymptotically. Once more, we look at growth rates 
of these parameters that give us asymptotically the 2-norm, while retaining a rich enough set. 
The following results extend Propositions 2 and 3, with slightly stronger hypothesis: 

N-co N-cu Proposition 4 If T ( N )  ---+ oo, and y(N) - 0, then 
N-rco 

l l x l l ~ N , y , T  - 11B112 

Proof: Immediate from (10). 

Proposition 5 Let u(O), . . a ,  u(N - 1) be independent, identically distributed random vari- 
ables, with 0 mean and finite 4th order moment. 

If for some constant v > 1, we have y(~) , /&  > v, and T(N) Jq N= 0, then 
N+co 

P ( u  E W N , ~ , T )  --+ 1. 

Proof: See the Appendix. 

In the previous result we had to pose restrictions on the growth of T (N)  to guarantee that 
our set of signals is asymptotically at least as rich as stochastic white noise. This motivates 
the inclusion of this horizon parameter in a general noise description. 

As a comment, even though these asymptotic results are comforting, we will have no 
guarantees as to  the accuracy of any stochastic model for our disturbances; so other choices 
of evolution of y and T that make the sets richer than stochastic white noise might be of 
interest. From a practical point of view, we will always be dealing with finite data records, 
so it is the finite horizon results which are most useful to characterize disturbance rejection 
properties in the system. 

To elaborate on this issue a little further, let us assume that using some standard system 
identification technique (as can be found, for example, in [6]) we have obtained a model for 
some part of a system which includes some "residuals", i.e. a disturbance variable needed to 
explain the experimental data. Typically the model we have fit is a great simplification from 



the  physical reality; so the disturbance will account for the more complex phenomena which 
we have neglected (probably nonlinear and not close at all to a stochastic white process). 

From the empirical values of this disturbance, however, we may directly obtain autocorre- 
lation constraints which we have confidence the disturbance will satisfy, whatever its nature. 
The  previous results will give us hard bounds on system rejection of this disturbance. If we 
get tight values of y,  we will be close to the 2-norm of the system; y = 1 gives the 1-I, norm 
of the system. For intermediate values we can use the bounds obtained above. 

The only (inevitable) leap of faith when we predict future behavior of the system is that 
the  experiment was representative of this behavior (so that the disturbance will not be "worse" 
i n  the future) and that the system response is negligible for time scales longer than the length 
of the experiment. 

To summarize, we have described white noise signals in the time domain by constraining 
the autocorrelation function by a rectangular weight function. We have given hard bounds on 
the  system gain in the sets described by these constraints, and conditions on the evolution of 
the  weight function parameters with the data record to ensure desirable asymptotic properties. 
The  shape chosen for the weight function could of course be changed, and the results in 
theorems 1 and 2 could be extended with little effort, the bounds involving a weighted 1 
norm of the function rh( t ) .  

4 Frequency domain descriptions 

We consider dual descriptions of white noise signals in terms of DFTs. 

Lemma 2 In the conditions of Lemma 1, let U(k), Y(k), be the N-point DFTs of the signals 
u(t), y(t). Let H ( k )  = ~ ( e j 9 ~ )  where 'Fl(ejw) is the frequency response (in the FIR case, 
T < N ,  H(k) coincides with the N-point DFT of h(t)). Then 

and therefore the power spectra verify 

Proof: 

Now we want to translate what we mean by "white" signals in terms of the DFTs: we 
want the power spectrum to  be close to a constant. If X(k) is the DFT of a noise signal, we 
might think of requiring - 1 to be small for all k. However, observing a typical DFT of 

a noise signal we find that the IX(k)I2 is very erratic and only close to constant in an average 



Figure 2: Power spectrum of a pseudorandom sequence 

k 

Figure 3: Smoothed power spectrum 

sense. This is illustrated in figure 2, which depicts a power spectrum of a signal generated by 
a pseudorandom number generator. 

So to  uncover the underlying "whiteness" we need to perform some local averaging in 
the signals; this idea is very well known in statistical spectral analysis (smoothing of "peri- 
odograms" by windowing, as appears for example in [2] ). The idea is to  convolve the DFT 
with a window function V(k) which performs the averaging, and we can require that the 
smoothed signal be close to constant. Figure 3 shows the result of smoothing on the previ- 
ous power spectrum, using a rectangular frequency window of width (see definition below) 
Kv = n. 

We give the following definitions: 

Definition 2 A frequency window is an N-periodic sequence V(k), such that c,":: V(k) = 1. 
The circular convolution of an N-periodic sequence X(k) with V(k) is defined as 

The width parameter of a window is defined as 



Motivation for the choice of the width parameter can be found in the rectangular window 
defined as V ( k )  = & for -B < k 5 B, and as 0 in the rest of the period, which has width B. 

Definition 3 A DFT X ( k )  of a signal x(t) of length N is said to be white with Bevel a ,  with 
respect to a frequency window V(k), i f  

max 
k 

W e  denote the set of all such signals as wN,,,v. 

This smoothing by convolution in the frequency domain corresponds in the time domain to 
multiplying the autocorrelation sequence by a weight. A variety of shapes of windows could 
be chosen, leading to  slightly different sets of noise signals. The main parameter, however, is 
the width of the window. We explore its influence on the system norm: 

Theorem 3 Assume M = max, $/3.1(ejW)12 is finite. Then 

Proof: 
First observe that, setting once more H ( k )  = 7-1(ej%~) ,  we have 

This can be seen by approximating the integral IX(ejW)12dw and bounding the difference 
using the derivative bound (in fact, in the FIR case the difference is 0) .  So it suffices to show 
tha t  N-1 N-1 

r K V M  

N k=o 
< ( 1  + a)$ C k=o IH(k)12 + 7 - E lH(k)12 5 l l ~ l l $ N , * , "  - 

The left inequality is immediate by considering the gain on the signal U ( k )  r 1 which is 
2 in the set. For the right hand side, take any U ( k )  E PN,,,~, lu(k)12 = 1 = Ilull a 

Then 



In the last inequality, IH(b - 1)12 - JH( IC) (~  is the increment of the function 17-I(ej")12 on an 
interval of length 11 12n/N, so it can be bounded by M/ZI2n/N. The previous inequalities give 

Using the fact that U(k) E wN,,,v we have 

The following is an immediate consequence: 

N-co Proposition 6 In the same hypothesis as above, if in addition a ( N )  - 0 and Nq 
0, then 

As t o  the requirements on the growth of K v  that would allow usual white signals to fall 
i n  the set wN,,,v, we haven't pursued analytic proofs with stochastic white noise (which are 
not as clean), but extensive simulations with pseudorandom number generators show that a 

N-+m 
choice of Kv x 0 is compatible with a ( N )  - 0. 

We have introduced essentially dual descriptions in time and frequency domains, of pa- 
rameterized sets which describe white noise. A natural question is whether, with the adequate 
choice of weightlwindow in each domain, the sets are the same. The difficulty here is that 
t he  vector norms used to measure distances (to the delta function in the time domain, to a 
constant in the frequency domain) do not correspond to each other through DFT. One could 
think of using the Euclidean norm, which has this property, at the expense of complicating 
the  description of the sets (these would involve Euclidean norms of autocorrelation sequences, 
implying expressions of fourth order in the original signal). In any case, it is clear that for 
appropriate growth rates in the parameters, both families capture for large N a rich set of 
white signals and the disturbance rejection measure turns out to be the 2-norm of the system. 
Therefore it seems natural, for practical purposes, to use the simplest possible description. 

5 Mult ivariable extensions 

We shall show briefly in this section (in the time domain only) how previous results extend 
t o  the case of vector valued signals, which are inputs to a MIMO system. Let us consider 
the  time domain case with the definitions for autocorrelation matrices introduced in section 
2. We get a new version of Lemma 1, which can be proved in a similar way (in this case, 
however, we cannot group terms into R H ( ~ )  due to non-commutativity of matrix product). 



Lemma 3 Let 7-f be a MIMO ( m  inputs, p outputs) discrete time system. Let u(t) E Rm, t = 
0, ... N - 1 be a fragment of an N-periodic input signal to system H, y( t )  E Rp, t = O...N - 1 
be the corresponding output. Then 

Now we turn to defining what we mean by vector-valued white noise. What changes is 
that  now we must deal with spatial correlations (cross-correlations between the variables) as 
well as time correlations. For a signal x(t) to be white we want the matrix R,(O) to be close 
t o  a constant times the identity, and the matrices R,(T), T # 0, to be small. 

Definition 4 A signal x ( t )  E Rm, t = 0 - - - N - 1 is said to be white with level y up to time 
lag T i f  it satisfies 

m 

Here S(T) is the usual delta function, and the norm referred to in the definition can be any 
matrix norm. A choice which gives simple expressions below is the Frobenius norm, llAllF = 
( t r a c e ( ~ ' ~ ) ) + .  W e  will denote the set of all such signals by WN,-(,T. 

Hard bounds similar to (9) on the difference R,(T) - RH(r) may be given assuming 
u E WN,y,T, though they are not as clean. We will only state the corresponding theorem for 
induced norms, which extends (10). 

Theorem 4 Under the conditions in Lemma 3, using l l - l l F  to define WN,-(,T, 

Proof: Let llull = 1, u E WN,r,T. Starting from (15), standard manipulations yield 
w 1 

traee(R,(O)) - IIHII: = trace ( R u ( ~ )  - -~ (T) I )RH~(T)  
t=-w m 

Using the fact that Itrace(AB)I < ilAllF /lBllF for real matrices, and that IIRU(r)IIF 5 llu112 
for T # 0 we have 

We immediately obtain that under the same conditions as in Proposition 4, the asymptotic 
norm is & IIH112. 



6 Connections to behavioral descriptions of systems 

In the behavioral approach to system theory as described in [3], a linear system is characterized 
by an equation R(q)w = 0, where w is the vector of manifest variables which we wish to 
describe. The behavior f? is the set of all signals w(t) compatible with these equations, and 
we need not distinguish a priori which of these variables are inputs or outputs. For precise 
definitions and statements we refer to [3], a summary is given in [5] .  

Disturbance variables will appear in the vector w, and we could think of imposing white- 
ness constraints to  some of them. In the behavioral framework, this amounts to intersecting 
the  behavior B with sets such as those described in this paper. In this sense, these descriptions 
appear to  be natural and fit more easily into the behavioral picture than stochastic models. 

One could argue, however, that a white noise variable is always an input: we choose to 
model a complex phenomenon as a simplified part plus noise sources, which only exist in our 
model, and by construction they are inputs. So apparently not much is gained by adopting 
the  behavioral setup as far as noise descriptions are concerned. 

However, the behavioral point of view comes in when we consider the following question: 
i s  there a way to write our whiteness constraints on signals to make them compatible with 
standard robust control models, which are usually written in terms of linear fractional trans- 
formations (LFTs) on norm bounded A blocks? It turns out that this can be done if we adopt 
t he  behavioral setup for robust control, as proposed in [4]. 

In what follows we will show how we can write whiteness constraints in autocorrelations 
as uncertain behavioral equations , which can afterwards be interconnected to a behavioral 
description of our system (which might also include other sources of uncertainty) to give a 
unified description in which we can analyze stability and performance of the system in the 
presence of noise. We consider a simple case which captures the essence of the construction. 
Assume N, y , T are fixed, and consider the autocorrelation constraints 

Irw(.)I 6 ~w(O)7 .r = l . . . ~  

which were introduced in Definition 1 to describe whiteness of a certain variable w. Focusing 
on, say, T = 1, we can write the equivalent pair of constraints 

Considering the plus sign, we can write the inequality as 

- 2(1- 7 )  llw112 5 IIw - q-1w112 

where all norms and the inner product (,) are over a period of length N.  Choosing a = 
d m ,  we can replace the previous constraint by the existence of an operator 6, ll6li 5 1, 
and a signal such that 



This in turn can be written as the uncertain behavioral equation S(6, M(q))w = 0 where S 
denotes the LFT M22 + MZ16(I - MI16)-l MI2, depicted in the figure below, M(q) being the 
transfer function in the box. 

Figure 4: Uncertain behavioral equation for autocorrelation constraint 

This equation can also be rewritten as S(diag[q-l, 61, M)w = 0 which is the discrete time 
version of the form described in [4]. 

We can write a similar constraint for the minus sign in (18), and also for other values 
of T (here we could also accommodate a different weighting of the autocorrelation). The 
final result is that the set WN,y,T can be described as the set of N-periodic sequences such 
that S(A,  M(q))w = 0, where A is a structured operator, llAll 5 1. By interconnecting this 
equation with a behavioral description of a system we have recast the white noise analysis in 
the standard LFT paradigm for robust control. There is no clear way to do this if we do not 
adopt the behavioral framework. 

A final comment is that an alternative paradigm for robust control has been recently 
proposed by Megretsky [8], based on integral quadratic constraints (IQCs). It is easy to see 
(and is mentioned in 181) that correlation constraints such as those describing WN,y,T fit the 
IQC framework without further transformation. In fact, these more general IQCs can also be 
recast as uncertain behavioral equations. 

7 Conclusion 

This paper provides a framework in which to analyze spectral properties of disturbances and 
link them to  rejection properties in a linear system. The connection is direct in the sense that 
information available in experimental data is directly tied to the system response, avoiding 
the intermediate step of introducing a probabilistic model. 

These descriptions are attractive because they match up with existing methods for the 
analysis of systems containing other forms of uncertainty which are usually written in the 
worst case paradigm. 

In this respect, the uncertain behavioral framework comes in as a global setup where all 
these descriptions can coexist. In particular, robust performance analysis of a linear system 
with some structured uncertainty and subject to the restriction that some disturbance signals 
should be white, can be recast as the question of finding non-trivial solutions to an uncertain 
behavioral equation of the type S(A,  M(q))w = 0. This stimulates a direction of future 



research, also related t o  the work in [4], regarding the extension of robustness analysis and 
synthesis techniques t o  the behavioral framework. We are  currently working on an extension 
of p-analysis t o  this setup. 

$ Appendix 
We will outline here the proof of Propositions 3 and 5, which relate to the stochastic setup. In the 
sequel, u(0) . . . u(N - 1) . . . is a sequence of independent, identically distributed random variables, of 
0 mean and finite variance (r2. To analyze the behavior of r,(r), r > 0, it is useful to consider the 
non-circular autocorrelation N-7-1 

n=O 

Let ArU( r )  = rU(r) - F,(r). We first write the complement of WN,7,T as 
T 

For any constants 0 < q < p < 1, we can write 

Proof of Proposition 3: 
Here we assume T is fixed, and yfi -+ co. 
For fixed T > 0, the random variables z(n) = u(n)u(n + r), n 2 0 form a strictly stationary 

random process, with 0 mean and finite variance (rz = (r4, which is r-dependent (i.e., (z(0) . . .z(m)) 
and (z(m + k), z(m + k + 1) . . .) are independent for k > r ) .  

Under these conditions of weak dependence we have a version of the central limit theorem (see for 
example, [9]). This says that 

converges in distribution to a normal 1\/(0,1) law. Since Yfiv + co, the probability of the first set 
in  (21) converges to  0 as N + co. 

Since r is fixed, the distribution of Ar,(r) is fixed and therefore the probability of the second set 
in  (21) also vanishes asymptotically. 

As for the third set, we use the fact that p < 1 and invoke the law of large numbers to get 

N+oo N-oo 
Adding these terms, P (AL,,) - 0 , and from (20) we get P (u # W N , ~ , ~ )  -+ 0. 



Proof of Proposition 5: 

Here we assume y (N)d& > v > 1 , and T(N)~-' N3 0 and that the variables u(n) 

have finite 4th moment. This implies the variables z(n) = u(n)u(n + T) also have this property for 
7- > 0. 

Since the number of sets A & ,  will now be a function of N ,  we will need a bound on P (A&,?). 
Going back to (21), let us choose 11 = l / v  < 1, and 11 < p < 1; we will bound separately the probability 
of each set. 

For the first set, we will need a bound on the convergence rate to the normal distribution of 
Z N - ,  = Once more, under the T-dependence conditions we have here, such bounds are a a m .  

known; we quote one from [lo], which requires finite 3rd moment: 

where Z is a M(0 , l )  random variable, (Ca will denote constants from now on). A bound for the tail 
of the normal distribution is C3 -$ 

P(lZI > P)  < -e P 
Setting ,f3 = > d m  , and rn = N - r ,  we get after some manipulations, for sufficiently 
large N ,  

For the second set in (21) we can use a Chebishev inequality (this uses the 4th moment assumption) 
t o  get 

For the third set, the finite 4th moment gives us a similar Chebishev bound P (s < p )  5 9. 
Putting all the terms together, we have 

Now we bound T by TI and use (20) to get the bound 

using the fact that T(N)JF Nq 0. 
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